文摘网 > 范文 > 正文

​《圆的面积》教学设计13篇

2024-06-14 14:51 来源:文摘网 点击:

《圆的面积》教学设计13篇

作为一位无私奉献的人民教师,时常需要用到教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。优秀的教学设计都具备一些什么特点呢?以下是小编精心整理的《圆的面积》教学设计,仅供参考,希望能够帮助到大家。

《圆的面积》教学设计 篇1

教材分析:圆是小学数学平面图形教学中唯一的曲线图形。本课是在学生了解和掌握圆的特

image.png

征、学会计算圆周长的计算以及学习过直线围成的平面图形面积计算公式的基础上时行教学的。教材将理解“化曲为直”的转化思想在活动之中。通过一系列的活动将新数学思想纳入到学生原有的认知结构之中,从而完成新知识、的建构过程。学好这节课的知识,对今后进行探究“圆柱圆锥”的体积起举足轻重的作用。

学情分析:学生从认识直线图形发展到认识曲线图形,是一次飞跃,但是从学生思维特点的角度看,六年级学生以抽象思维为主,已具有一定的逻辑思维能力,已经有了许多机会接触到数与计算、空间图形等较丰富的'数学内容,已经具备了初步的类比、推理的数学经验,并具有了转化的数学思想。所以在教学中应注意联系现实生活,组织学生利用 学具开展探究性的数学活动,注重知识发现和探索过程,使学生从中获得数学学习的积极情感和感受数学的价值。 教学目标:

1、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。

2、能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单的实际的问题。

3、在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。

教学过程:

一、回顾旧知,引出新知

1、老师引导学生回顾以前学习推导几何图形的面积公式时所用的方法。

2、学生回答后老师让学生上前展示自己的方法

二、创设情境,提出问题

1、教师引导观察,说说从中得到那些数学信息?

2、老师引导,找出与圆的面积有关的数学问题。

3、学生回答,老师板书(圆的面积)

三、探究思考,解决问题

1、让学生估计圆的面积大小

(1)与同桌说一说你是怎么估的

(2)汇报,

(3)老师引导有没有更好的方法

2、探索圆面积公式

(1)学生操作

(2)指名汇报。

(3)操作反思(把圆等分的份数越多,拼成的圆越接近长方形。)

(4)转化思想:近似长方形的长相当于圆的那一部分?怎么用字母表示?

(5)观察汇报:由长方形的面积公式推导圆形的面积计算公

式,并说出你的理由。

(6)总结:1、计算圆的面积要那知道那些条件。

2、生活中处处有数学,我们要从小养成培养自己热爱数学,善于观察,爱动脑筋的良好习惯。

四:实践应用

《圆的面积》教学反思

教学反思:通过试讲觉得学生对活动的设计比较喜欢,思维活跃,教案设计基本满意。结合自己课堂教学体验反思和学校领导的悉心帮助,总结出以下不足:

一、复习占用的时间不当。

复习设计方式不够合理,教师的演示过程加上学生的叙述占用了宝贵的时间,现在反思,这一环节如此“精细”是在浪费课堂的宝贵时间。

二、探究没有充分放手。

在探究圆的面积公式推导过程中,孩子的兴趣是很高的,但在学生汇报的环节,我总是担心孩子,在孩子操作演示的时候给予帮助,造成了放手不够,造成了引导过度的现象,出现了探究一直是在我的控制下进行的。

三、没给问题爆发的机会

在教学中很关注半径的平方的计算,在教学时直接提醒学生这一运算顺序,本以为做得很好,但现在反思,我的做法,失去了让学生经历在错误中反思的珍贵体验,也就是说由于我的“认真”,在计算应用环节孩子们失去了精彩的错误分析与错误反思。这也是我们学生为什么学过的知识遗忘快的根本所在,没有充分理解,怎么能记得好呢?

《圆的面积》教学设计 篇2

一、教材内容分析

人教版六年级上册《圆的面积》这部分内容是平面几何的最后阶,(教材67——68页)它既是前面所学直观地认识平面图形及有关计算的延续和发展,又为今后逐步由实践几何转入论证几何作了渗透和准备。因此,在教学时,主要是让学生用转化的思想进行操作、观察和比较,推导圆的面积计算公式。并让他们初步学会用确切、简明的数学语言表述概念的本质特征,引导学生初步接触归纳推导出公式并理解并掌握公式的应用,为今后进一步学习打下基础。

二、学情分析

六年级的学生已掌握了长方形、平行四边形、三角形、梯形的面积公式的推导方法,具有一定的转化和类比推理能力,并具对圆和圆的周长知识已经有了初步的了解,有强烈的好奇心。因此,易于在转化和类比推理方面进行启发和引导,让学生利用已有的知识和经验,实现《圆的面积》公式的推导,但圆是由一条曲线围成的图形,学生很难跟以往由几条线段围成的图形之间建立必然的联系。因此,在利用转化和类比推理基础上,要结合操作演示,让学生在学习圆面积公式的推导过程中,激发学生的学习兴趣,掌握学习方法,增加感性的认识,从而真正掌握圆的面积公式的推导过程,并且能应用公式解决一些生活实际问题。

三、教学目标知识与技能

1,让学生利用已有的知识,引导学生通过观察、操作、分析和讨论,推导出圆的面积公式,并能运用公式解答一些简单的实际问题。

过程与方法1,引导学生经过“感知——动脑——观察——合作探究”等系列活动.逐步培养学生的抽象思维能力。

2,通过实例引入,让学生体验数学来源于生活,又服务于生活;向学生展示生动、活泼的数学天地,唤起学生学习数学的兴趣,使全体学生积极参与探索。情感态度与价值观

让学生在参与中体验成功的乐趣。使学生感受到生活中数学的魅力,让学生领会图形转化的神奇和魅力。

四、教学策略选择与设计

1、注重情境创设,有意识地激发学生学习知识的兴趣 :数学来源于生活,通过实际情境,既创设了生动的生活情境,激发了学生参与的兴趣,又为后继学习和深入探究埋下了伏笔。而且在直观的动画情境中很好地展示了圆的面积概念。使学生体会到实际生活中计算圆的面积的必要性,同时也激发了学生求知的欲望和学习兴趣。

2、注重实践操作,有意识地培养学生获取知识的能力 :学习是学生的内部活动,因此,在课堂教学中既要重视其学习结果,更要重视其学习过程,学生的创造潜能,存在于学习过程、探究过程之中,而不存在于数学结论中,只有实实在在的学习过程、思维过程、探究过程,才能有所创造,培养学生自己探索获取知识的能力。这节课的教学,紧紧抓住“圆面积公式的推导”这一教学重点,放手让学生自己动手操作,归纳整理。通过学生的剪拼,转化,利用等积变形把圆面积转化成了其他的平面图形,进而归纳、概括出圆面积的计算方法。这种多角度的思考,既打通了新、旧知识的联系,又激发了学生的求知欲,使学生不仅知其然,更知其所以然。

3、注重学法指导,有意识地引导学生应用转化的方法 :本节课中,在求圆面积公式时,不是教师灌输式地教会学生S=πr2,而是由学生在原有知识经验的基础上,通过“观察——猜测——操作——分析——探究”, 并在老师的引导下,利用“转化”的思想,将圆变成已学的图形:长方形、三角形、梯形。通过学生自主动手剪拼,然后研究两者之间的联系,实现圆的面积公式的推导,从而推导出圆面积公式。整节课,始终围绕这个主题,从创设生活情境,到提出研究的方向与方法,最后引导学生推导出公式,教师只作为组织者、指导者和参与者,适当进行点拨,使学生不但“学会”,而且“会学”。从而培养了学生的空间想象力,又发展了学生的逻辑思维推理能力。

4、注重教具和学具的应用,有意识地突破学生学习知识的难点 利用圆的面积这一节的教学用具辅助课堂教学,有其直观、形象而又生动的特点,它能使抽象的内容形象化,同时还不受时间和空间的限制。这节课恰当地运用教学用具和

教材学具,充分调动了学生的学习兴趣,提高了课堂教学的效率。

五、教学准备

教学用具,圆形卡片学具

六、教学过程

关键词:情境教具 学具准备 操作 转化 推导 猜测观察讨论 运用交流

一、创设情境,揭示课题

1,创设情境

学校的花坛的半径为10米,我们能求出它的面积吗?

2,揭示课题

为了解决这个问题这节课我们一起学习“圆的面积”好不好?

板书:圆的面积

3,说一说

师:我们以前学过哪些平面图形的面积计算公式,把你知道的说出来与大家交流一下?

生答: 师:同学们回答得很好,今天我们就用以前我们已经掌握的数学知识来算一算圆的面积。

二、动手操作,实践探究

1,引导学生回忆之前学过平行四边形、三角形和梯形面积公式的推导方法

2、动手操作,尝试转化

1),看老师手上拿的是什么?(圆)什么叫圆的面积?能不能把圆转化成学过的图形来计算它的面积呢?

2),如果把圆平分成8等份、16等份,那请你们拿出自己动手剪开后的学具,用这些近似的等腰三角形小纸片拼一拼,看能拼成什么图形。教师巡视指导

3),用教具演示,把圆平分成16份,让学生观察圆面积的“转化”。(圆近似成了长方形)

4)、通过上面的操作,你们知道圆的面积公式推导采用的是什么方法吗?从上面的操作你得到了什么结论?

3、探究联系,推导公式

现在来看拼成的长方形面积与圆的面积有什么联系?长方形的长和宽与圆的周长和半径有什么关系呢?

1),猜测,再一次观察老师的示范

2),学生小组合作操作,每一组学生回答,并展示自己拼成的作品

3),小组讨论得出结论:圆的面积采用的是“化曲为直”的“转化”法。如果把圆平分的份数越多,每一份分得就会越小,拼成的图形就越接近长方形。

4),小组讨论总结出:拼成的长方形面积和圆的面积相等,长方形的长相当于圆的.周长的一半,宽相当于半径。

5),观察,小组讨论得出公式:(板书)

长方形的面积 = 长 × 宽

圆的面积 = 周长的一半 × 半 径

S =πr ×r = πr2

三、运用公式,解决问题

1、下面我们就应用圆的面积公式来解决一些生活的实际问题。出练习让学生做,巩固所学知识

2、再次出示上课前提出的情境题,让学生独立完成,再帮助学生订正 学生独立运用所学知识解答,加深对概念的理解,全班汇报交流 运用所学的知识,解决现实中的实际问题,既能达到巩固的作用,又能让学生体会到数学的应用价值。使学生加深对知识的正确认识,掌握了圆的面积计算方法。

四、课堂小结

(一)组织交流

回顾一下这节课我们学习的内容。

(1)本节所学的主要公式是什么?

(2)如果求圆的面积,必须知道什么量?

(二)总结

平面图形的面积公式推导,一般都用到“转化法”这种数学思想。圆的面积公式,在我们的生活中运用非常广泛,如计算:环形面积、圆形花坛的面积、麦田自动喷灌的面积、树干的横截面积、圆形蒙古包的面积、圆形凉亭的面积、

圆形饭桌的面积、水桶底面积、圆锥沙堆的底面积等都用到圆的面积计算公式,希望大家多留意观察身边周围的事情,去发现和提出问题,再应用所学的知识去解决它,这样你的学习成绩会大有进步的!

七,板书设计圆的面积(1) 长方形的积 = 长 × 宽

圆的面积 = 周长的一半×半 径

S = πr×r = πr2 八、教学评价设计

在本节课的教学中,我在教学评价这一环节力争做到:(一)在探究新知的过程中注重对学生数学学习过程的评价;(二)在复习旧知识时恰当评价学生的基础知识和基本技能;(三)在运用旧知识时重视评价学生发现问题、解决问题的能力。

《圆的面积》教学反思

蕲春县第四实验小学 何国栋 在本节课的教学中,我在教学和设计中充分利用数学和生活的联系,在教学和设计中大胆运用以下环节:1,既然数学源于生活,那么选择学生熟悉的生活场景,使学生感受到所研究的数学知识就在生活中的广泛应用,直观地唤起其已有的知识经验,激发其学习的兴趣,又为新知识的学习做好了准备。 2,启发学生归纳出平面图形的面积公式推导方法,是采用 “割补法”、“旋转平移法”等数学“转化”的思想方法,让学生建立空间概念。 3,注重学生动手操作,让学生在探究中发现知识、理解知识、掌握知识,体现了以学生为主体的思想。尤其是让学生自己“剪”、“拼”,进一步使学生感知圆的边缘是曲线,拼成的图形边缘接近直线。体现了让学生在自我探索、自我发现中获取知识的新理念,这样跟进一步运用学生原有的学习经验,让学生运用转化的思想,把问题化归到原有的知识体系中;利用学生的实践活动,让学生经历知识的形成过程,进而找到推导圆面积公式的方法,获得积极的情感体验;培养学生的探索意识、合作意识及创新意识,引导和帮助学生成为发现者、研究者和探索者,让每个学生各方面

《圆的面积》教学设计 篇3

教学内容:

义务教育课程标准实验教科书六年级上册P67—68

教学目标:

1、让学生经历猜想、操作、验证、讨论和归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决简单的相关问题。

2、经历圆的面积公式的推导过程,进一步体会“转化”和“极限”的数学思想,增强空间观念,发展数学思考。

3、感悟数学知识内在联系的逻辑之美,体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。

教学重点:

掌握圆的面积计算公式,能够正确地计算圆的面积。

教学难点:

理解圆的面积计算公式的推导。

教学过程:

一、回忆旧知、揭示课题

1、谈话引入

前些日子我们已经研究了圆,今天咱们继续研究圆。

2、画圆

首先请同学们拿出你们的圆规在练习本上画一个圆。

3、比较圆的大小

请小组内同学互相看一看,你们画的圆一样吗?为什么有的同学画的圆大一些,有的同学画的圆小一些?看来圆的大小与什么有关?

4、揭示课题

我们把圆所占平面的大小叫做圆的面积。(出示课题)

二、动手操作,探索新知

1、确定策略,体会转化

(1)明确研究问题

师:同学们都认为圆的面积与它的半径有关,那么圆的面积和半径究竟有怎样的关系呢?这就是我们这节课要研究的问题。

(2)体会转化

怎么去研究呢?这让我想起了《曹冲称象》的故事。同学们听过曹冲称象的故事吗?谁能用几句话简单地概括一下这个故事?曹冲之所以能称出大象的重量,你觉得关键在于什么?(把大象的重量转化成石头的重量)

其实在我们的数学学习中我们就常常用到转化的方法。请同学们在大脑中快速搜索一下,以前我们在研究一个新图形的面积时,用到过哪些好的`方法?

预设:

学生回忆平行四边形、三角形、梯形的面积推导方法。

当学生说不上来时,老师提醒:比如,当我们还不会计算平行四边形的面积的时候,是利用什么方法推导出了平行四边形的面积计算公式呢?(割补法)

三角形和梯形的面积计算公式又是怎么推导出来的呢?(用两个完全一样的三角形或梯形拼成平行四边形)(课件演示推导过程)

小结:

你们有没有发现这些方法都有一个共同点?

(3)确定策略

那咱们今天研究的圆是否也能转化成我们已经学过的图形呢?(……)

如果我们也像推导三角形、梯形面积那样用两个完全相同的圆形拼一拼,你认为可能转化成我们学过的图形吗?那怎么办呢?(割补法)怎么剪呢?

①引导学生说出沿着直径或半径,把圆进行平均分;

②师示范4等份、8等份的剪法和拼法;

2、明确方法,体验极限

(1)学生动手操作16等份的拼法;

(2)比较每一次所拼图形的变化;

(3)电脑演示32等份、64等份、128等份所拼的图形,让学生体验分成的份数越多,拼成的图形就越接近长方形。

3、深化思维,推导公式

(1)请同学们仔细观察转化后的长方形,它与原来的圆有什么联系?(请同学们在小组内互相说一说)

(2)交流发现,电脑演示圆周长和长,半径和宽的关系。

(3)多让几个学生交流转化后的长方形和原来圆之间的联系。

(4)根据长方形的面积公式推导圆的面积计算公式。

三、运用公式,解决问题

1、现在要求圆的面积是不是很简单了?知道什么条件就可以求出圆的面积了?

出示主题图求面积:这个圆形草坪的半径是10m,它的面积是多少平方米?

2、判断对错:

(1)直径是2厘米的圆,它的面积是12。56平方厘米。()

(2)两个圆的周长相等,面积也一定相等。()

(3)圆的半径越大,圆所占的面积也越大。()

(4)圆的半径扩大3倍,它的面积扩大6倍。()

3、知道了半径就可以求出圆的面积,那知道圆的周长能求出圆的面积吗?

四、总结新知,深化拓展

1、小结:

通过刚才的研究同学们推导出了圆的面积计算公式,更重要的是大家运用转化的方法把圆这个新图形转化成了我们已经学过的平行四边形和长方形,以后大家遇到新问题都可以用转化的方法尝试一下。

2、拓展

在剪拼长方形的过程中,有同学产生了疑问,能不能把剪下来的小扇形拼成三角形或者是梯形呢?让我们一起来看一下。(课件出示拼的过程)

那利用拼成的三角形和梯形又能推导出圆的公式吗?有兴趣的同学可以课后去剪一剪、拼一拼、想一想、算一算,相信你一定会有更多的收获。

《圆的面积》教学设计 篇4

教学目标:

知识目标:了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。

能力目标:能运用圆的面积公式计算圆的面积,并能运用圆面积知识解决简单实际的问题。

情感目标:在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,感受极限思想。

教学重点:能运用圆的面积公式计算圆的面积,并能运用圆面积知识解决简单实际的问题。

教学难点:能运用圆的面积公式计算圆的面积,并能运用圆面积知识解决简单实际的问题。

教学过程:

一、创设情境,提出问题。

1.(出示P16中草坪喷水插图)请同学们观察这幅插图,说说从图中你能发现数学知识吗?

2. 这个圆形的面积指的是哪部分呢?

3. 今天这节课我们就来学习圆的面积。(板书:圆的面积)

二、探究思考,解决问题。

1.请大家估计半径为5米的圆面积大约是多大?

2.用数方格的方法求圆面积大小

①出示P16方格图,让同学们看懂图意后估算圆的面积,学生可以讨论交流。

②指明反馈估算结果,并说明估算方法及依据。

3.在实际生活中往往要有一个精确的结果,我们接下来就来讨论一个能计算圆面积的方法。

三、探索规律

1.大家还记得我们以前学习的平行四边形、三角形、梯形面积公式是怎么推导来的吗?

2.那么圆形的面积可由什么图形面积得来呢?

3.拿出剪好的图形拼一拼,能成为一个什么图形?拼成的图形与原来的圆形有什么关系?

4.同学们操作,教师巡视.

5..大家想象一下,如果把一个圆等分的份数越多,拼成的图形越接近什么图形?

6.你能否由平行四边形或者长方形的面积公式得到圆形面积公式呢?并说出你的理由。

①因为拼成的'平行四边形的底也就是圆形周长的一半;平行四边形的高就是圆形的半径。而平行四边形面积=底×高,那么圆形面积公式=圆周长的1/2×半径即可。

②因为拼成的长方形的长也就是圆形周长的一半,长方形的宽就是圆形的半径。而长方形面积=长×宽,那么那么圆形面积=圆周长的1/2×半径即可。

7用字母怎么表示圆面积公式呢?

四、应用圆面积公式

1.现在请大家用圆面积公式计算喷水头转动一周可以浇灌多大面积的农田。

2.第18页第1题

学生独立解答,集体订正的时候要求学生说出每一步计算过程和依据。

3. 第18页第2题

让学生理解题意后,鼓励学生在头脑中想象,猜一猜结果,然后在地上画一个半径是1米的圆,让学生看看,并试着站一站。

板书设计:

圆的面积

平行四边形面积=底×高,

圆形面积公式=圆周长的1/2×半径

圆形面积公式=圆周率圆×半径2

《圆的面积》教学设计 篇5

教材分析

教材首先通过圆形草坪的实际情景提出圆面积的概念,使学生在旧知识的基础上理解“圆的面积就是它所占平面的大小”。其次教材直接提出问题:能不能把圆转化成已学过的图形来计算面积?由于让学生完全自主的探索如何把圆转化成长方形是有很大难度,但是教材给出了提示,让学生利用学具进行操作,在此基础上让学生发现院的面积与拼成的长方形面积的关系,圆的周长,半径和长方形的长,宽的关系并推导出圆的面积计算公式,最后教材安排了例题,应用面积计算公式解决实际问题,已知直径,先求出半径,再求出面积。

学情分析:

1. 充分利用已学过的数学知识和教学思想方法进行教学。如,教学圆的面积的含义时,可以先让学生回忆已学过的图形面积的含义,并进行分析对比,使学生认识到它们的共同点都是指图形所占平面的大小。

2. 要充分利用直观教具,让学生在动手操作中自主探索,例如,教学圆面积计算公式的推导过程时,可以先让学生把教材后面所附的圆形做成学具,在教师指导下,可以通过小组合作的方式,自行决定等分成多少份,自由的分一分,剪一剪,拼一拼。最后把拼成的加以比较,使学生看到。分的份数越多,每一份就会越细,拼成的图形就会越近似于长方形。

教学目标

1.了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆的面积计算公式。

2.能正确运用圆的面积公式计算圆的面积,并能运用圆面积的'知识解决一些简单的实际问题。

3.在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。

教学重点和难点

教学重点: 圆的面积公式的推导及应用公式计算

教学难点:探究圆的面积公式的推导过程

《圆的面积》教学设计 篇6

教学内容:人教版六数上第66页、67页

教学目标:

1. 了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆的面积计算公式。能正确运用圆的面积公式计算圆的面积,并能运用圆面积的知识解决一些简单的实际问题。

2. 经历圆的面积计算公式的推导过程,体验实践操作、逻辑推理的学习方法。

3. 培养学生合作探究的意思,感悟数学知识的内在联系。 教学重点、难点:1.理解圆面积公式的推导过程.

2.会正确计算圆的面积。

教学准备:课件、圆面积演示器、分组实验材料(圆形纸片、胶水、剪刀)、两个大小不同的圆

教学过程:

(课前游戏)

猜谜:前面有一片草地(打一植物)

草地上来了一群羊(打一水果)

草地上有一群羊,突然来了一群狼(打一水果)

师:我发觉大家刚才猜谜语时第一个猜得最困难,第二个第三个猜时脱口而出,这是为什么呢?有了解决一种问题的难舍难分,就可以用这种经验解决类似的问题。数学学习中也常是这样的。

一、 导入:

师:请看屏幕,马总是被人们用一根缰绳拴在固定的地方,马就困惑了,它的活动范围有多大呢?它绕来绕去会在一个什么样的圈中?会形成什么样的形状?这个面有多大?面有多大,用数学上的语言或者词语描述就是指它的什么?这节课我们就来学习《圆的面积》。(板书课题)

二、 认识圆的面积:

1.师:老师这有一个圆,请看这个圆,什么是这个圆的面积呢?谁愿意上来比划比划?(出示教具)一学生上台比划。

师:圆表面的大小就叫做圆的面积。

2.师:老师还带来了一个圆,请你将这两个圆比较一下,你发现了什么?

生:一个圆面积大,一个圆面积小。

师:那你发现圆的面积大小会与什么有关呢?结合这两个圆来好好观察观察。

生:半径或者直径越长,圆的面积就越大。

师:看来大家都知道了圆的面积大小与半径或者直径有关,但圆的面积究竟怎么样来计算呢,下面我们就一起来探究下。

三、观察与尝试猜测:

1.(出示正方形与圆的课件)

师:我们先用一个简单的办法来猜想一下圆面积的公式。以圆的半径r为周长画一个正方形,再画这个的三个,你能计算出这个大正方形的面积是多少吗?在圆中再画一个小正方形,小正方形的面积又是多

少呢?

生:大正方形的面积是4r,小正方形的面积是2r。

2.师:圆与大正方形的面积相比,你发现了什么?再与小正方形相比,你又发现了什么?

生:圆的面积比大正方形的面积小,比小正方形的面积大。

师:那就是说圆的面积要比4r小,比2r大。那你猜一猜,圆的面积会是多少呢?

生:3r。

师:我们姑且先这样猜测圆的面积公式就是3r。大家究竟猜测的对与否,还需要验证。

四、 小组合作、拼摆。

1. 师:我们以前学习过平行四边形,你们还记得怎样计算平行四边形的面积吗?

生:底*高。S=ah。

师:还记得平行四边形的面积计算公式是如何推导出来的吗?

是这样的吗?我们来看一看。(演示)我们把平行四边形的左边割了一部分,补到平行四边形的右边,这样就把平行四边形转化成了长方形。那你们还能记得三角形的梯形的面积公式又是怎样推导出来的呢? 生:三角形和梯形转化成平行四边形再推导的`。

师:这三种图形的面积公式都是先转化成以前学过的图形,再推导的。那我们能不能把圆转化成以前学过的图形来推导圆的面积计算公式呢? 222222

2. 师:下面我们就来做一个实验,咱们把圆平均分成若干份,大家请看,每一份都像什么?

生:三角形或者等腰三角形。

师:对,它近似于一个等腰三角形。好的,同学生,我们可不可以用这些近似的等腰三角形拼成一个以前学过的图形呢?请你们拿出老师给你们准备好的工具开始吧!

提出要求:各组一定要认真整齐地拼摆。小组同学快速地合作完成,完成后坐好举手示意。

学生开始小组合作。

3. 汇报合作结果。

师:你们都拼成了什么样的图形?上台来展示一下吧。

生分组上台展示。

要求学生汇报自己是怎样拼的,拼成了一个什么图形。

师:刚才我们把圆平均分成了16份、32份,那如果分得份数越多,你会发现什么?

生:分得越多,越接近长方形。

五、 面积计算公式推导:

1. 师:这个近似的长方形是由这个大小一样的圆拼成的。这个圆的半径是r,那么这个近似的长方形的长和宽又是多少呢?请同学们同桌互相商量商量,开始吧!

2.师:找到答案了吗?

生:长是πr,宽是r。

师:长方形的面积呢?请同学们在练习本上写一写。

那圆的面积呢?也写一写,读一读吧。

学生汇报。师板书。

3.师:这个公式与我们之前猜测的做一下比较,你发现了什么?

4.师:通过这个公式,我们可以看出,要求圆的面积必须先知道什么呢?

生:半径。

师:知道什么也可以求出圆的面积呢?

生:直径、周长。

师:下面我们就来试一试吧!

六、 巩固练习。

1. 平方的口算练习。

1 2 3 4 5 6 7 8 9 10 20 3022222222222 2

2.马的活动范围题:半径为2米,求周长。学生在练习本上完成。

3.圆形花坛的直径是20米,求圆形花坛的占地面积。

学生先汇报思路,再在练习本上完成。

4. 树干的周长是125.6米,求树干的横截面积是多少?

学生先汇报思路,再在练习本上完成。

七、 总结:

师:这节课你有什么收获?圆在我们的生活中,很常见,请看这是什么?课后你会自己用卡纸剪出这样一个风车,并计算出它的面积是多少吗?

《圆的面积》教学设计 篇7

教学内容:

新人教版数学六年级上册第67—68页,圆的面积。

教学目标:

1、理解圆的面积的意义,掌握圆的面积计算公式,并能运用公式解决实际问题。

2、经历圆的面积计算公式的推导过程,体会转化的思想方法。

3、培养认真观察的习惯和自主探究、合作交流的能力。

教学重难点:

1、运用圆的面积计算公式解决实际问题。

2、理解圆的面积计算公式的推导过程。

教学准备:多媒体课件

教学方法:自主探究,合作交流

教学过程:

一、小测验:

1、一个圆的直径是6厘米,这个圆的半径是()厘米,周长是()厘米。

2、一个圆形喷水池的周长是31.4米,这个喷水池的直径是()米,半径是()米。

二、问题引入

1、师:出示图片,小明家门前有一块直径为20米的'圆形草坪,每平方米草坪8元。你能根据图中信息提出一个数学问题吗?

2、生:尝试说出一个数学问题。(铺满草坪需要多少元钱?)

3、师:要想求出铺满草坪需要多少元钱,需要先求出圆的面积。今天我们就来学习圆的面积——(板书课题:圆的面积1)

三、探索新知

(一)复习,平面图形面积的计算方法。

(二)探索圆面积的计算方法

1、我们一起来推导圆的面积公式吧!

2、利用多媒体课件展示圆的面积公式的推导过程。

(1)分别把圆4等分、8等分、16等分、32等分、64等分,拼得近似长方形。

(2)把圆128等分后,说明分的份数越多,拼得的就越像长方形。

3、在图形的拼凑与转化中,同时观察与思考以下问题。

a、拼凑中,圆在转化成什么图形?

b、长方形的长与圆的周长有什么关系?长方形的宽与圆的半径有什么关系?c、拼成的近似长方形的面积和圆的面积有什么关系?

4、教师一边引导学生一起回到,一边板书以下填空:长方形的长是(圆周长的一半),长方形的宽是半径(r)

因为长方形的面积=(长×宽),所以圆的面积=(πr×r)=(r2)

如果用s表示圆的面积,那么圆的面积计算公式就是S= πr2

5、学生齐读公式

S= πr2

教师强调r2= r × r(表示2个r相乘)

(三)应用公式

一个圆的半径是4厘米。它的面积是多少平方厘米?

思考:

1、本题已知什么,要求什么?已知圆的半径,求圆的面积。

2、要求圆的面积,可以直接利用公式把r=4代入计算。分组合作交流计算,

3、指名学生汇报结果,课件展示解答过程。并小结本题属于已知圆的半径求圆的面积,可直接代入计算。

1、圆形草坪的直径是20m,每平方米草皮8元,铺满草坪需要多少钱?

2、要求铺满草坪需要多少钱,应先求出什么?先求圆的面积。

3、要求圆的面积,能直接运用圆的面积公式计算吗?不能,应先求出圆的半径。分组合作,完成计算,并汇报计算过程与结果。

4、课件展示解答过程,强调书写格式。并小结本题的关键是先要求出圆的面积,是已知圆的直径,求圆的面积。

(四)知识应用

1、一个圆形茶几桌面的直径是1m,它的面积是多少平方米?已知什么,求什么?首先要求出什么?分组合作解决,并汇报结果。

课件展示解答过程,并让学生说出本题属于已知直径求圆的面积。

2、街心花园中圆形花坛的周长是18。84米。花坛的面积是多少平方米?思考要求花坛的面积,应先求什么?怎么求解呢?分组合作交流完成本题。

3、视情况作适当的提示,展示解答过程。说出本题属于已知圆的周长,求圆的面积。

四、课堂总结:这节课,你有哪些收获?

说出圆面积公式的推导和圆面积公式后,展示圆面积公式的推导过程,并引导学生齐答要求圆的面积,必须先知道圆的半径。

五、作业布置:

教材第71页,练习十五,第1题~第4题。

《圆的面积》教学设计 篇8

一、教学目标

1、知识与技能

(1)知道圆的面积公式推导过程;

(2)会用圆的面积公式计算圆的面积;

2、过程与方法

经历动手操作讨论等探索圆的面积公式的过程;

3、情感态度与价值观

积极参加数学活动,体验圆的面积公式推导的探索性和挑战性,感受公式的确定性和转化的数

学思想。

二、教学重点:

圆的面积的计算

三、教学难点:

推导圆的公式的过程;

教具准备:多媒体课件、圆片、胶水、剪刀

四、教学过程:

(一)、创设情境,导入新知

1、同学们喜欢看动画片吗?今天老师给你们带来一段动画片。(出示课件)

2、师:我们要求小朋友的活动场地有多大,就是求圆的什么? (圆的面积)

3、拿出事先准备好的圆形学具,摸一摸,指一指,感受圆的周长和面积。

4、设疑:那么圆的面积怎样求呢?

5、教师让学生说出以前学过的平行四边行图形的面积公式是怎么的来的?然后复习演示平行四边行的公式推导过程。

6、要求圆的面积,怎样把圆形转化成以前学过的图形呢?

(1)、设疑导入,激起学生学习的兴趣.

(2 )、复习渗透转化的思想,为推导圆的面积埋下伏笔.

(二 )合作探究

把圆形转化成以前学过的图形探究圆的面积公式

师:同学们开动脑筋,小组合作看能把圆转化成什么图形?

(1) 学生动手操作;

(2) 交流演示各组拼出的图形。

(3)教师用课件演示。

教师用课件演示长方形的长与宽和圆的周长与半径的关系.得出圆的面积公式S=

问: 那么要求圆的面积必须知道什么条件?

(三)解决问题

(一)、已知圆的半径,求圆的面积

例1、一个圆形花坛的半径是3m,它的面积是多少平方米?

(二)、已知圆的直径,求圆的面积

例2、圆形花坛的直径的20 m,它的面积是多少平方米?

(三)、已知圆的周长,求圆的面积

例3、一个圆形储水池的周长是25.12 m,它的占地面积是多少平方米?

四 巩固练习

1、判断对错:

(1)直径相等的`两个圆,面积不一定相等。。 ( )

(2)两个圆的周长相等,面积也一定相等。 ( )

(3)圆的半径越大,圆所占的面积也越大。 ( )

2、根据下面所给的条件,求圆的面积。

(1)半径3分米

(2)直径20厘米

五、知识拓展

在一个边长为8厘米的正方形里画一个最大的圆,这个圆的面积是多少平方厘米?

六、总结:学生谈收获

反思:本节课较好地完成了教学目标,学生学习积极性高,课堂气氛活跃,学习效果好。学生亲身经历提出问题,动手实践,分析验证,通过把圆形转化成以前学过的图形的活动,激发学生学习数学探究新知的兴趣,让学生动手操作,动脑想象,动口说理等活动,用多种感官感知拼成图形与圆形的关系,运用推理得出圆的面积公式,让学生亲身经历知识形成和发展的过程,对知识进行再创造,体验了学习新知的喜悦。其次,通过利用面积公式解决数学中的实际问题,培养学生应用数学的意识和运用所学知识解决实际问题的能力。

《圆的面积》教学设计 篇9

教学理念:

本课时是在学生掌握了直线图形的面积计算的基础上教学的,主要是对圆的面积计算公式进行推导,正确计算圆的面积。教学圆的面积时,教材首先通过圆形草坪的实际情境提出圆面积的概念,使学生在以前所学知识的基础上理解“圆的面积就是它所占平面的大小”。

接着教材启发学生寻找解决问题的思路和方法,回忆以前在研究多边行的面积时,主要采用了割补、拼组等方法,将多边行的面积转化成更熟悉和更简单的图形来解决,那么,在这里也可以用转化方法,让学生尝试运用以前曾多次采用过的“转化”的数学思想,把圆的面积转化为熟悉的直线图形的面积来计算,引导学生推导圆面积的计算公式,再一次让学生熟悉运用“转化”这种数学思想方法来解决较复杂的问题的策略。教学时,还要让学生认识到转化是一种很重要的数学思想方法,在解决日常问题以及在科学研究中,人们常常就是把复杂转化为简单,未知转化为已知、抽象转化为具体等方式来处理的。

教学目标:

1、通过动手操作、认真观察,让学生经历圆面积计算公式的推导过程,理解掌握圆面积公式,并能正确计算圆的面积。

2、学生能综合运用所学的知识解决有关的问题,培养学生的应用意识。

3、利用已有知识迁移,类推,使学生感受数学知识间的联系与区别。培养学生的观察、分析、质疑、概括的能力,发展学生的空间观念。

4、通过学生小组合作交流,互相学习,培养学生的合作精神和创新意识,提高动手实际和数学交流的能力,体验数学探究的乐趣和成功。

教学重点:

运用圆的面积计算公式解决实际问题。

教学难点:

理解把圆转化为长方形推导出计算公式的过程。

教学准备:

多媒体课件及圆的分解教具,学生准备圆纸片和圆形物品。

教学过程:

一、创设问题情境,激发学生学习兴趣 。

1、请同学们指出这些平面图形的周长和面积,并说说它们的区别。

2、你会计算它们的面积吗?想一想,我们是怎样推导出它们面积的计算公式的? (电脑课件演示)

[设计意图:创设问题情境,启发学生回忆长方形、平行四边形、三角形和梯形周长和面积的概念。再利用电脑课件演示,让学生对已经学过的平面图形面积公式的推导有更清晰的认识,从而激起学生从旧知识探索新知识的兴趣,并明确思想方向,有利于学生想象能力的培养。]

二、合作交流,探究新知。

1、出示圆:

(1)让学生说出圆周长的概念,并指出来。

(2)想一想:圆的面积指什么?让学生动手摸一摸。

(揭示:圆所占平面的大小叫做圆的面积。)

(3)对比圆的周长和面积,让学生感受他们的区别。

同时引出课题——圆的面积。

[设计意图:通过学生动手摸一摸,使学生能够大胆地概括圆的面积,为开展学生想象力提供了广阔的空间。另外,让学生比较圆的周长和面积,让学生充分感知圆面积的含义,为概括圆面积的意义打下良好的基础。]

2、推导圆面积的计算公式。

(1)学生观察书本P67主题图,思考:这个圆形草坪的占地面积是多少平方米?也就是要求什么?怎样计算一个圆的面积呢?

(2)刚才我们已经回顾了利用平移、割、补等方法推导平行四边形、三角形和梯形的面积计算公式的方法,那能不能把圆也转化成学过的图形来计算?猜一猜,圆可以转化成什么图形来推导面积公式呢?你打算用什么方式进行转化?

[设计意图:通过提问,让学生对圆的面积公式的推导先进行预测,引导学生大胆寻找求圆面积的`方法,激发学生的创作灵感,提高学生的求知欲望与探究兴趣。]

(3)请各小组先商量一下,你们想拼成什么图形,打算怎么剪拼,然后动手操作。

①分小组动手操作,把圆平均分成若干(偶数)等份,剪开后,拼成其他图形,看谁拼得又快又好?

②展示交流并介绍:小组代表给大家介绍一下你们组拼出来的图形近似于什么?是用什么方法剪拼的?为什么只能说是“近似”?能不能把拼出的图形的边变直一点?

[设计意图:给学生充分的时间动手操作,放手让学生自己动手把圆剪拼成各种图形,鼓励不同拼法,引导发挥联想,让学生通过比较得出沿半径剪拼的方法是较为科学的。教学中注重对学生进行思维方法的指导,给学生提供了自行探究,创造性寻找解决问题的方法和途径,让学生在合作交流中获取经验,这一过程为学生提供了个体发展的空间,每个人有着不同的收获和体验。]

③当圆转化成近似长方形时,你们发现它们之间有什么联系?

课件演示:

师:现在,老师把圆平均分成16份,可以拼出这个近似长方形的图。想象一下,如果平均分成64份、126份??又会是什么情形?

④小结:如果分的份数越多,每一份就会越小,拼成的图形就会越接近于长方形。

[设计意图:通过电脑课件演示,生动形象地展示了化圆为方,化曲为直的剪拼过程。使学生进一步明确拼成的长方形与圆之间的对应关系,有效地认识和理解圆转化成长方形的演变过程。]

(4)以拼成的近似长方形为例,认真观看课件,师生共同推导圆的面积计算公式。

①引导:当圆转化成近似的长方形后,圆的面积与长方形面积有什么关系?并且指出拼出来的长方形的长和宽。

②长方形的长和宽与圆的周长、半径有什么关系?如果圆的半径是r,这个近似长方形的长和宽各是多少?如何根据已经学过的长方形的面积公式,推导出所要研究的圆的面积公式?

③学生讨论交流:长方形的长是圆周长的一半,即a=C/2=2πr/2=πr,宽是圆的半径,即b=r。教师板书如下:

(5)小结:如果用S表示圆的面积,r表示圆的半径,那么圆的面积计算公式就是。同学们通过大胆猜想和动手验证,终于得到了圆面积的计算公式,老师祝贺大家取得成功!

(6)学生打开书本P68补充圆面积的计算公式的推导过程。思考:计算圆的面积需要什么条件?

[设计意图:在推导过程中给学生创设讨论交流的学习机会,通过观看电脑课件的演示,引导式提问、试写推导过程等不同形式,来调动学生参与学习的积极性,发挥学生的主体作用,培养了学生操作、观察、分析、概括的能力。最后进行小结,巩固学生对圆面积计算公式的认识。另外通过提出问题,强调学生计算圆面积时需要的条件。]

三、实践运用,巩固知识。

1、已知圆的半径,求圆的面积。

判断对错:已知一个圆形花坛的半径是5米,它的面积是多少平方米?

=3.14×5×2=31.4(米)

(学生先独立思考,再汇报交流,共同修改。)

强调:半径的平方是指两个半径相乘。

2、已知圆的直径,求圆的面积。(教学例1)

①师:把第一题的“半径是5米”改成“直径是20米”,那么这个圆形花坛的面积又怎样算呢?(小组合作交流,探讨计算方法。)

②学生汇报计算方法,要强调首先算什么?

③打开书本P68补充例1。

3、已知圆的周长,求圆的面积。(书本P70练习十六第3题)

小刚量得一棵树干的周长是125.6cm。这棵树干的横截面的面积是多少?

①引导提问:要求树干的横截面积,必须先求出树干的什么?你打算怎样求树干的半径呢?

②根据圆的周长公式,师生间推导出求半径的计算方法。

③学生独立完成,教师巡查给于适当的指导。另外请两位学生上台板演,共同订正,并且指出计算中容易出现错误的地方。

4、一个圆形溜冰场,半径30米。

(1)这个溜冰场的面积是多少平方米?

(2)沿着溜冰场的四周围上栏杆,栏杆长多少米?

提问:知道圆的半径用什么方法求圆的面积?第(2)个问题求栏杆的长度也就是求这个圆形溜冰场的什么?用什么方法求圆的周长?

[设计意图:学生已经推导出圆面积的计算公式,以上的四道题的作用是巩固圆面积计算公式的运用,使学生对圆面积的计算方法有更深刻的理解。在练习时,大胆放手让学生进行计算,同桌间合作探讨,经过学生多次尝试解答,使他们的观察力、动手操作能力、想象力都能够得到进一步的发展,从而促进了理论与实践相结合,培养了学生灵活运用所学知识解决实际问题的能力。其中第3题通过周长求面积的计算和第4题知道圆的半径求圆的面积和周长,让学生体会到圆的周长和面积有着紧密的联系和根本的区别,使新旧知识有更好的连接,并且让学生感受到几何图形计算的灵活性。]

四、总结评价,拓展延伸。

1、今天我们学了什么知识?一起闭上眼睛回忆我们整节课的学习过程,你有什么感受啊?在计算圆的面积时有什么地方值得注意的?

2、在生活中还有很多关于圆面积的知识,老师出一个题目给同学们课后进行思考:有一个圆形花坛,中间建了一个圆形的喷水池,其他地方是草坪,求草坪的面积是多少?

《圆的面积》教学设计 篇10

教学内容浙教版小学数学第十一册教材P141—143、例1

教材分析《圆的面积公式》这部分内容是在学生初步认识了圆,学习了圆的周长,以及学过几种常见直线几何图形面积的基础上进行教学的。学生从学习直线图形的面积,到学习曲线图形的面积,不论是内容本身还是研究方法,都是一次质的飞跃。学生掌握了圆面积的计算,不仅能解决简单的实际问题,也为以后学习圆柱、圆锥的知识打下基础。教材首先提出圆面积的概念,接着提出如何把圆转化成已学过的图形来计算面积的问题。把未知的问题转化成已知的问题,是常用的数学思想和方法。让学生用这种数学思想和方法来解决新的比较复杂的问题。教材采用实验的方法,把圆平均分成若干份,再拼成一个近似长方形,然后由长方形的面积公式推导出圆面积计算公式。

学情分析在之前,学生已认识了各种平面图形的特征以及学会了三角形、平行四边形及梯形面积的推导方法,知道可以利用剪拼的方法把要学的图形转化成已学过的图形,然后研究两者间的关系,从而推导出公式,并已渗透转化的思想,为学习圆面积公式的推导找到了学习的方法。而且让学生动手剪拼进行操作活动,使学生了解图形之间的联系,既能加深对图形性质的认识,又能发展学生的认知能力。

教学目标

1.理解圆面积计算公式的推导过程,掌握圆面积的计算公式。

2.能够利用圆面积公式进行计算。

3.培养学生动手操作、观察分析、概括推理的能力。

教学重点圆面积计算公式的推导和利用公式进行正确计算。

教学难点极限思想的`渗透与圆面积公式的推导过程。

教学准备多媒体课件、 圆的平面图形1个、剪刀、直尺等

教学过程

一、创设情境

1.播放录像:美丽的校园景色、各种形状的花坛。

问:你能计算出它们的占地面积吗?

2.媒体演示(从各种形状的花坛中提炼出下面的图形)。

(1)学生说出这些图形的面积计算公式。

(2)用什么方法推导出三角形面积计算公式的?

教师板书:

剪拼

要学的图形 已学的图形

转化

3.媒体出示圆形。

今天要学习圆的另一个知识,就是圆占平面的大小叫圆的面积。(请学生摸一摸哪里是圆的面积?)

(板书课题:圆的面积)

  二、公式推导

1.提出问题,制定方案

(1)小组讨论:对于圆我们前面已经学习了什么?圆与以前我们研究的平面图形有什么不同?你想通过什么方法推导圆的面积公式?你认为你面临最大的困难是什么?

(2)小组汇报:

a.不同之处:圆是由一条封闭曲线围成的平面图形,而以前学过的平面图形都是由几条线段围成的封闭图形。

b.面临的困难:如何曲线变直线。

2.操作实验,分析问题

(1)学生动手实验、剪拼图形。(允许学生根据发现的规律结合课本内容分组合作完成圆面积计算公式的推导)。

(2)交流汇报。

①学生汇报剪拼过程,同时教师贴示。

②观察思考(教师有意选取一组剪拼成长方形的来交流)

a.拼成的图形像什么图形?为什么说它像长方形而不是长方形?

b.谁有办法把边变得更直些?把这个近似长方形变得更近似长方形?

(教师媒体演示)

c.把圆分成64等分后,拼接后的图形它的边会怎么样?图形会怎么样?

d.生闭眼想象:如果把圆面等分成128份,256份……一直这样下去分成很多很多份,剪拼后的图形是什么情形?

3.推导公式,解决问题

(1)观察讨论

当圆转化成近似长方形时,你们发现它们之间有什么联系?

(2)学生填实验报告。

(3)学生交流汇报推导过程。

(4)观看课件演示过程,并请同桌两位同学互说一次。

三、公式应用

1.简介千古绝技:中国古代数学家的割圆术。

公元3世纪我国数学家刘徽推算出圆周率时采用的"割圆术"。这种以直代曲,用有限逼近无限的数学思想就是我国古代数学家的首创……

2.解答引入时花坛占地面积(若设计一个自动旋转喷灌装置应装在哪儿?)。

3.根据下面所给的条件,求圆的面积。

(1)直径10厘米(2)周长12。56

(生独立解答,思考(2)面积和周长相等吗?做了这些题目你有什么体会?)

四、课堂总结

1.这节课你学会了什么?

2.这节课你有什么感受?

五、课外拓展

1.媒体出示:学校现有一块长方形土地(长50米、宽25米),打算在上面建造一个圆形体育馆,最大可以占地多少平方米?

2.已知正方形的面积是25平方厘米,求圆的面积。如图:

3.一支森林考察队发现了一颗要3人才能合围的大树,现要算出这棵大树的横截面(圆形)面积,怎么办?(探讨哪一种测量法合理简洁)

板书设计

圆的面积

圆所占平面的大小叫圆的面积。

长方形的面积 = 长 × 宽

圆的面积 = πr × r = πr2

(周长的一半)

剪拼

要学的图形 已学的图形

转化

《圆的面积》教学设计 篇11

教学内容:

人教版六年级上册教材第67~68页《圆的面积》例1及练习十六的第1~3题。

教学目标:

1、使学生理解圆面积的计算公式与推导过程,并能运用其公式正确、灵活的计算。

2、在教学活动中,通过操作、合作交流,培养学生迁移、分析、合作和创新的能力,发展学生的空间观念。

3、使学生掌握转化的数学思想方法,并将所学知识运用于生活实际。教学重、难点:

重点:

正确计算圆的面积。

难点:

圆面积公式的推导。

教学准备:

配置的学具袋里的学具、彩笔、一把剪刀,圆形的.纸片和若干材料纸。教学过程:

一、创设情境,生成问题。

1、出示牧羊图,让学生想一想它吃最大的范围应该有多大呢?是什么形状?

2、现在你想提什么数学问题?

揭示课题:圆的面积

二、探索交流,解决问题。

1、认识圆的面积

a、什么是圆的面积呢?

b、出示一个圆片:圆的面积在哪里?请同学们拿出圆片,用手摸一摸,感受一下圆的面积,你想说什么?

c、圆的大小主要与哪些因素有关?(半径、直径、周长)

出示结语:圆所占平面的大小叫做圆的面积

回忆一下:我们以前学平行四边形、三角形、梯形的面积计算公式时都是用什么方法推导出来的?(引导转化)

2、生生互动,推导公式

圆可转化为哪一个学过的图形呢?小组可以折一折、画一画、剪一剪、拼一拼,试试看!

1)、小组讨论:设计方案,并汇报。

a、让学生拿出卡纸(1),观察卡纸(1)上的圆被分成多少等分,圆被转化成什么图形呢?

b、让学生拿出卡纸(2),观察卡纸(2)上的圆被分成多少等分,圆又被转化成什么图形呢?

那么,有没有什么办法让它的边变得更直呢?再剪几份,你是说把它分得更多份些,是吗?(可以把它分得更多份些)

c、请拿出手中的圆片试着折一折,展开来,看看你折成了几等份?如果再折下去可以吗?现在就把你们折的这几种方案。(八等份、十六等份、三十二等份)

d、观察这三种分法,比较一下,同样大小的圆平均分的份数不同,拼出来的图形有什么变化?

发现:平均分的份数越多,拼成的图形越接近长方形。

e、转化成长方形,推导圆的面积公式。

动手实践:沿着半径把圆切开,巧妙地把圆拼成了近似的长方形,现在我们可以利用长方形的面积公式来推导圆的面积公式。

小组合作探究,动手摆一摆,边观察、边讨论、边推导,看哪组表现最好。展现以下问题:

①长方形的长相当于圆的()?

②长方形的宽相当于圆的()?

③长方形的面积相当于圆的()?

④因为长方形的面积=()

所以圆的面积=()。

2)、小组讨论后,并演示公式推导的全过程。

3)、揭示字母公式() 。

小结:可见要求圆的面积只要知道什么就行?(半径)

3、运用公式学习例1。

学生独立完成,全班交流展示。

三、巩固应用,内化提高。

1、课本第69页做一做第1题

学生独立完成,汇报方法。

2、完成基本练习(做一做)

四,回顾整理,反思提升。

1、这节课我们发现了什么、学会了什么?

2、希望同学们在今后的学习中更好地运用好转化的方法去学习更多的数学知识。

《圆的面积》教学设计 篇12

“圆的面积”说课设计教学重难点及教法说明 说课内容是全日制小学数学课本第十二册"圆的面积"。本课是在学生已经掌握长方形面积的基础上,通过直观、演示,把圆分割成若干等份,再拼成一个近似的长方形,然后由长方形面积公式推导出圆面积的计算公式。

圆的面积是本单元的教学重点,也是今后进一步学习圆柱体,圆锥体等知识的基矗本节课的教学目的要求是:

1.通过学生操作、观察推导出圆面积的计算公式,并能运用公式正确计算圆的面积。

2.通过教学培养学生初步的空间观念。

3.渗透转化数学思想。本节课的教学重点是观察操作总结圆面积公式。难点是理解公式的推导过程。关健是弄清圆与转化后的近似长方形之间的关系。本课教学,采用直观演示和学生动手操作等方法,充分运用电教媒体辅助教学,由圆转化为近似的长方形,总结出圆的面积公式,并能在实际中加以运用。

本节课分四个环节来设计教学。

第一个环节:复习导入新课 为了激发学生的学习兴趣,在计算机的屏幕上显示出一个红颜色的圆,请同学看这圆一周的长度叫什么?这个圆所占平面的大小又叫什么?引出课题"圆的面积"。

第二个环节:新授 教学中,运用转化的方法,将未知转化为已知,不仅可以化繁为简,化难为易,而且可以勾通知识之间的联系。可以帮助学生理解新知识,提高课堂教学效率。鉴于此,新授部分我是这样设计的。

(一)公式的推导

1.准备题请同学们回忆平行四边形的面积计算公式是怎样推导出来的。再想想,三角形、梯形又都是转化成哪一种图形推导出它们的面积计算公式的。本课就用这种转化的方法来推导圆面积的计算公式。

2.推导圆面积公式

第一层次教授转化的方法。让学生看屏幕上的圆,老师把它平均分成8份,先把上面的4等份和下面的4等份分开,再交叉地拼在一起,看看,拼成了一个什么图形的近似图形?为什么说是近似的平行四边形呢?让学生继续观察,我们将其中左边的一个等份再平均分成2份,将一小份移到右边拼起来,现在拼成的图形近似什么图形?由圆转化成近似的长方形,什么发生了变化,什么没有变?

第二层次运用转化方法让学生进行操作,再通过演示渗透极限思想。让学生拿出准备好的16等份的圆,利用刚才的方法把它剪开拼成一个近似的长方形。观察一下,拼成的近似的`长方形与屏幕上8等份的比较一下,哪个更接近于长方形,为什么?如果我们把一个圆等分成32份,拼成的长方形会怎样呢?(屏幕上演示)这时引导学生思考:我们刚才是把一个圆平均分成8份、16份、32份,如果再继续分下去,分的份数更多,拼成的图形你会发现什么?由此可得:把圆等分的份数越多,拼成的图形就越接近于长方形,尽管形状发生了变化,但面积是不变的,也就是说,拼成的长方形的面积等于圆的面积。

第三层次推导公式让学生再注意观察屏幕上显示的由圆转化为长方形的过程,思考这个长方形的长和宽各相当圆的哪一部分?那么,能根据长方形的面积公式推导出圆的面积公式吗?归纳得到圆的面积。(公式略)回顾学习过程:将圆平均分成8份,进行拼图,目的是教给学生由圆转化为近似长方形的方法,并初步感知圆的形状变了,但面积并没有变。再让学生亲自动手将圆平均分成16份拼图,使学生进一步感知拼成的图形更接近于长方形。此时,经过学生的空间想象,他们在大脑中已经形成了由圆转化成长方形的图像,这时在计算机上再显示将圆等分32份后拼成的近似于长方形的图像,会使学生在视觉上得到证实,他们的思维结果是正确的:将圆平均分成的份数越多,拼成的图形越接近长方形,但面积始终是不变的。运用计算机显示由圆到近似长方形的图像的变换过程,揭示出数学知识的内在规律的科学美,并充分体现构图美和动态美的特点,它能刺激学生,强化学生的好奇心,提高学生探求知识奥秘的欲望,有助于解除学生视听疲劳,提高学习效率。计算机的辅助教学促进学生良好思维品质的形成,达到了预想的教学目的。

3.小结

让学生回忆一下圆的面积公式是怎样推导出来的?要求圆的面积,需要知道什么条件?这样使学生的思维能力得到进一步的提高。

4.阶段性练习

a.看标有半径的圆,求面积。

b.已知半径求面积。(练习时交待运算顺序。)

(二)学习例1要求学生运用公式正确计算,注意书写格式和运算顺序。

第三个环节:巩固练习 对于巩固练习,遵循由浅入深、由易到难、循序渐进的原则设计,意在让学生在理解概念的基础上,正确地掌握公式,并能运用知识解决实际的问题。第一层次的练习是以文字题的形式给出直径求圆的面积。第二层次的练习给出半径和直径求圆的周长和面积。第三层次的练习是在两个圆(一个标有圆心,一个没标圆心)中量出所需条件求圆的面积。然后,对全课进行总结,质疑问难。

第四个环节:布置作业。 (书中题)本节课可采用由计算机设计的三维动画,给学生以生动、形象、直观的认识,富于启发地清晰揭示了知识的内在规律,再加上学生实际动手操作和老师的点拨解说、提问,使教学过程有机组合,充分显示了电化教学的优势,较之其它教学手段和方法更易实现教学过程的最优化。

《圆的面积》教学设计 篇13

一、教材内容:

本节课内容是求圆的面积

二、教学目标:

知识目标:

⑴引导学生通过观察了解圆的面积公式的推导过程

⑵帮助学生掌握圆的面积公式,并能应用公式解决实际问题、

能力目标:使学生了解从“未知”到“已知”的转化过程,逐渐培养学生的抽象思维能力。

情感目标:通过实例引入,让学生体验数学来源于生活,又服务于生活;向学生展示生动、活泼的数学天地,唤起学生学习数学的兴趣,使全体学生积极参与探索,在参与中体验成功的乐趣。

三、教学重点难点:

重点:圆的面积公式的推导过程以及圆的面积公式的应用。

难点:在圆的面积公式推导过程中,学生对圆的无限平均分割,“弧长”无限的接近“线段”的理解以及将圆转化为长方形时,长方形的长是圆的周长的一半的理解。

四、教学流程

1、复习迁移,做好铺垫

师问:

(1)长方形面积公式

(2)平行四边形面积公式

师:平行四边形面积公式的求法是借住谁来推导出来的?

2、创设情景,引入课题

用多媒体出示:一只小牛被它的主人用一根长2米的绳子栓在草地上,问小牛能够吃草的面积有多大?

问题:

(1)小牛能够吃草的最大面积是一个什么图形?

(2)如何求圆的面积呢?

3、师生互动,探索新知

(1)师:平行四边形面积可以转化成长方形面积,那么圆的面积该怎么办呢?

(2)让学生动手操作:

教师将课前准备好的'圆分给各小组(前后四人为一组)。请同学们试试看,将圆转是否可以化成我们已学过的图形,并求出它的面积。

(3)让学生转化的过程进行展示。(略)(多组学生展示)

(4)用多媒体进行验证。

让学生闭起眼睛想一想是不是分得的份数越多拼成的图形越接近于长方形。

师:若把圆平均分得的份数越多,拼成的图形就越接近于一个长方形,它的面积也就越接近了这个长方形的面积。

(5)引导归纳:

思考1:既然圆的面积无限接近于长方形。那么我们如何根据长方形的面积来推导圆的面积公式呢?

思考2:长方形的长、宽与圆有什么关系呢?

再次多媒体展示动画。

师:若圆的半径为r,则圆的周长为2πr,从而得出长方形长=πr,宽=r,

即:圆的面积=长方形的面积=长×宽=πr×r

得到:s圆=πr×r

师:要求圆的面积必须知道什么条件?若不知半径必须先求出半径再求出圆的面积。

4、实际应用,强化新知

(1)利用公式解决实际问题:求小牛吃草的最大面积是多少?

师:强调书写格式:a写出公式b代入数字c计算结果d写出单位。

(2)出示例题:

例题1:已知一个圆的直径为24分米,求这个圆的面积?

a、让学生独立练习,b、指名板演,c、师生评议。

例2、一个圆形花坛,周围栏杆的长是25、12米,这个花坛的种植面积是多少?(π≈3、14)

a、学生独立练习,b、指名板演,c、师生订正。

师:引导学生对三道题进行分析比较,归纳出求圆的面积方法。

5、巩固练习,深化新知

1、判断题

(1)圆的半径扩大到原来的3倍,圆的面积也扩大到原来的3倍。()

(2)半径为2厘米的圆的周长与面积相等。()

2、把边长为2厘米的正方形剪成一个最大的圆,求这个圆的面积。

3、一块直径为20厘米的圆形铝板上,有2个半径为5厘米的小孔,这块铝板的面积是多少

6、课内总结,梳理新知

师:(1)本节所学的主要公式是什么?

(2)如果求圆的面积,必须知道什么量?

(3)已知圆的周长、圆的直径是否也可以求圆的面积呢?如何求。

7、布置作业